New groups to ER=EPR conjecture
نویسندگان
چکیده
منابع مشابه
From Acyclic Groups to the Bass Conjecture for Amenable Groups
We prove that the Bost Conjecture on the `-assembly map for countable discrete groups implies the Bass Conjecture. It follows that all amenable groups satisfy the Bass Conjecture.
متن کاملNonarithmetic superrigid groups: Counterexamples to Platonov’s conjecture
Margulis showed that “most” arithmetic groups are superrigid. Platonov conjectured, conversely, that finitely generated linear groups which are superrigid must be of “arithmetic type.” We construct counterexamples to Platonov’s Conjecture. 1. Platonov’s conjecture that rigid linear groups are aritmetic (1.1) Representation rigid groups. Let Γ be a finitely generated group. By a representation o...
متن کاملNew refinements of the McKay conjecture for arbitrary finite groups
Let G be an arbitrary finite group and fix a prime number p. The McKay conjecture asserts that G and the normalizer in G of a Sylow p-subgroup have equal numbers of irreducible characters with degrees not divisible by p. The Alperin-McKay conjecture is version of this as applied to individual Brauer p-blocks of G. We offer evidence that perhaps much stronger forms of both of these conjectures a...
متن کاملNew Counterexamples to Knaster’s Conjecture
Given a continuous map f : Sn−1 → Rm and n − m + 1 points p1, . . . , pn−m+1 ∈ Sn−1, does there exist a rotation % ∈ SO(n) such that f(%(p1)) = . . . = f(%(pn−m+1))? We give a negative answer to this question for m = 1 if n ∈ {61, 63, 65} or n ≥ 67 and for m = 2 if n ≥ 5.
متن کاملArithmetic Groups and Lehmer’s Conjecture
Arithmetic groups are a rich class of groups where connections between topology and number theory are showcased in a particularly striking way. One construction of these groups is motivated by the modular group, PSL2(Z). The group of orientation preserving isometries of the hyperbolic upper half plane, H, is isomorphic to PSL2(R). Since Z is a discrete subgroup of R it follows that PSL2(Z) is d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Cosmology, Astronomy and Astrophysics
سال: 2019
ISSN: 2641-886X
DOI: 10.18689/ijcaa-1000109